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ABSTRACT

A common problem in the design of expert systems is the
definition of rules from data obtained in system operation or

simulation. While it is relatively easy to collect data and to log
the comments of human operators engaged in experiments,

generalizing such information to a set of rules has not previously
been a straightforward task. This paper presents a statistical
method for generating rule bases from numerical data, motivated
by an example based on aircraft navigation with multiple

sensors. The specific objective is to design an expert system
that selects a satisfactory suite of measurements from a
dissimilar, redundant set, given an arbitrary navigation geometry

and possible sensor failures. This paper describes the
systematic development of a Navigation Sensor Management
(NSM) Expert System from Kalman Filter covariance data. The
development method invokes two statistical techniques: Analysis

of Variance (ANOVA) and the ID3 algorithm. The ANOVA
technique indicates whether variations of problem parameters
give statistically different covariance results, and the ID3

algorithm identifies the relationships between the problem
parameters using probabilistic knowledge extracted from a
simulation example set. ANOVA results show that statistically
different position accuracies are obtained when different

navigation aids are used, the number of navigation aids is
changed, the trajectory is varied, or the performance history is
altered. By indicating that these four factors significantly affect

the decision metric, an appropriate parameter framework was
designed, and a simulation example base was created. The
example base contained over 900 training examples from nearly
300 simulations. The ID3 algorithm then was applied to the

example base, yielding classification "rules" in the form of
decision trees. The NSM expert system consists of seventeen
decision trees that predict the performance of a specified

integrated navigation sensor configuration. The performance of

these decision trees was assessed on two arbitrary trajectories,
and the performance results are presented using a predictive

metric. The test trajectories used to evaluate the system's
performance show that the NSM Expert adapts to new situations
and provides reasonable estimates of sensor configuration
performance.

INTRODUCTION

Knowledge acquisition is a major problem in the
development of rule-based systems. The tools developed to date
are not designed to extract information from data for which no

generalizations are known a priori. Instead, these tools either

rely on the expert to provide examples from which rules are
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generated or try to capture the expert's problem-solving
methodology with interviewing techniques [1]. Unfortunately,
it often is difficult for experts to describe their problem-solving
methods or to detail the factors that come into play during the

resolution of a problem. It is exactly this type of knowledge that
is needed to design rule-based systems.

Since the early 1970's adaptive navigation has been viewed

as a highly desirable candidate for development in next-
generation aircraft [2]. It is envisioned that future aircraft will
have multi-sensor capability for navigation tasks requiring high

reliability, optimal performance, and increased automation.
With multi-sensor capability, the task of sensor configuration
selection and management will become an additional pilot
burden.

The performance of multi-sensor navigation systems (more

commonly known as "integrated" or "hybrid" systems) has been
explored since the late 1960's when results from modern control
theory provided techniques for sensor mixing and optimal state
estimation [3]. Hybrid systems refer to externally referenced

navigation systems that "aid" an on-board inertial navigation
system (INS) using an optimal state estimation mechanization.
Hybrid navigation systems combine the high- and low-
frequency accuracy properties of INSs and external navigation
aids (navaids) respectively. Many radio navigation and on-

board systems aiding INS have been modelled and their
performance covariance results obtained [4-8]. When radio

navigation systems are only partially operational, results show
that improved navigation performance is obtained over that of

the pure INS [4]. Therefore it becomes advantageous to keep
partially operational systems as candidates for integrated sensor
mixing purposes.

With a large number of available navaids, choosing an

optimal or near-optimal sensor set becomes a large combinatorial
problem. Convergence towards an optimal sensor configuration

requires an exhaustive computer search utilizing simulation
results as the basis for selection. In contrast, a small number of

available navaids reduces the decision space considerably.
Hence, a dilemma occurs; increasing sensor capability (and thus

reliability and performance) increases decision-making

complexity.

The selection of an optimal configuration requires the

application of some decision criteria. Most often, designers
choose between navaids based on the relative accuracies of each

system using a hierarchical approach [9]. This approach is
"knowledge-based" in the sense that the nominal performance of
the systems is well-known and that this knowledge is built into
the sensor hierarchy. The current hierarchical designs are not as
"robust" with respect to sensor availability and performance

changes as is necessary for future sensor management systems
[10]. Instead, these hierarchies represent "rules-of-thumb" that
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are useful in only the simplest cases. They do not resolve
sensor configuration problems when more detailed information
must be considered - for example when the number of each

available navaid is specified, when partially operational systems

remain viable candidates, and when trajectory effects degrade
system performance. It becomes necessary to explore factors
other than the performance of nominally operating navaids to
determine how these factors affect the decision-making process,
and to exploit the potential of hybrid systems.

The statistical technique Analysis of Variance (ANOVA)
[11] was used to identify the factors that cause variation in

navigation performance. Once the important factors were
identified, the relationships between them were determined. The

ID3 algorithm [12,13], an inductive inference technque based on
the probabilistic occurrence of events, was used to find these
attribute relationships.

The development of a navigation sensor management expert
system using the ANOVA/ID3 technique [14] is described in
this paper. The NSM system controls the selection of multi-
sensor configurations. The methodology is applicable to any
problem where the development of knowledge bases from multi-
factor data studies is desired.

INTEGRATED NAVIGATION SYSTEMS

Optimal estimation techniques are used to combine inertial

and radio navigational systems in order to provide stable
continuous inertial navigation information [15]. The errors

exhibited by these "hybrid" systems depend on the accuracy of
the aiding system, and navaid accuracies are functions of many
factors such as navaid type, number of similar navaids, and
trajectory parameters such as distance from the navaid and

whether the aircraft is approaching or receding from the station.
The sensor selection criteria depend on the relative importance of
these factors. Five external radio navigation and two on-board

navaids were used to update a medium-accuracy (10 N. Mi/hr)
INS. Hybrid system performance was simulated using the
linearized inertial navigation error model and navaid
measurement models as inputs into the optimal estimation filter.
The hybrid errors were updated at a specified navaid fix rate.

The systems simulated were (1) Global Positioning System
(GPS), (2) Long-Range Navigation System (LORAN), (3)

Tactical Navigation System (TACAN), (4) Distance Measuring
Equipment (DME), (5) VHF Omnidirectional Range (VOR), (6)
Doppler radar, and (7) air data sensor. The operational theory
and the mathematical models used to simulate the navaids and

the inertial navigation error model are discussed in detail in [14].

The numerically-stable discrete-time U-D implementation of
the Kalman Filter equations was used to mix the inertial system
and navaid information optimally, providing covariance

estimates of the navigation errors (e.g., north/east position)
[14,17]. Each nonlinear measurement equation was linearized
with respect to the inertial navigation states to obtain the

observation matrix used in the U-D measurement update
equations. Since sensor errors were taken into consideration in
the measurement models, the inertial error state vector was

augmented with the sensor shaping filter dynamics (e.g.,
random bias, first-order Markov model) to formulate the hybrid
navigation model. Additionally, the measurement noise time

history was simulated. As the aircraft moves along its trajectory
relative to ground-based navaid stations, the _neasurement noise.
characteristics change. Therefore an equation for a distance- or
time-varying measurement covariance matrix was found in order

to realistically model ground-based radio navigation systems.
According to Ref. 17, GPS measurement noise increases in a

similar way; as the satellite descends near the aircraft's horizon,

the noise increases. To simulate time-varying measurement

noise for the ground- and satellite-based navigation systems,
each noise variance was modelled as the sum of initial and

range-dependent variances. The latter component increases
linearly with the square of the distance from the station or
satellite.

Position accuracy was selected for the rule-based system

decision metric. Here, position accuracy is defined as the root
sum of squares (RSS) of the north and east component errors.
The RSS decision metric provides sufficiently consistent
quantities to compare hybrid performances. For a detailed
discussion of the RSS decision metric, the reader is directed to
Ref. 14.

HYBRID NAVIGATION SIMULATION RESULTS

Using the RSS position error metric to measure hybrid
system performance, the following U-D filter sinmlations were

performed:

1. Single-type hybrids: GPS, LORAN, TACAN, DME,

VOR, Doppler Radar, or Air Data Sensor aiding an INS
2. Number of stations used in a single-type hybrid

3. Multi-type hybrids: Combinations of different navaid types
aiding an INS

4. Aircraft trajectories simulated: High-performance,
commercial, general aviation

Comparisons of Single-Type Hybrid Performance

Consider the four ground stations A, B, C, and D spatially
oriented with respect to the high-performance, commercial, and

general aviation trajectories in Fig. 1. The four ground stations
are simulated as LORAN slaves, TACAN, DME, or VOR

stations. Figure 2 shows the performance differences of
ground-based, GPS, and on-board type hybrid systems. When
the results from all ground station A types (LORAN, TACAN,

DME, VOR) are compared on the high-performance trajectory,
the relative performance from best to worst may be listed as
follows: (1) LORAN, (2) TACAN, (3) DME, and (4) VOR.

For example, a hybrid system utilizing LORAN slave station A
provides better performance than a hybrid system utilizing
TACAN A; a TACAN A hybrid in turn outperforms a DME A

hybrid which in turn outperforms a VOR A hybrid. This pattern
is repeated for stations B, C, and D [14]. The best hybrid
performance was obtained from three GPS satellites aiding the
INS. Figure 2 also shows how the performances of the

Doppler radar hybrid and the air data sensor hybrid compare
with the GPS and ground-based navaid hybrids.

Referring to the LORAN results in Fig. 3, there is a
striking variation in the performance of the individual Stations

A-D; this figure reveals that single stations of the same type
aiding an INS give highly variable performance results. The
same variability in performance of the remaining ground-based
single-station navaids was found [14]. From Fig. 3, the
variation in Station A-D's performances is attributed to the

position of each ground station relative to the aircraft's

trajectory. For example, LORAN Slave A gives the smallest
position error of the four stations; referring to Fig. 1, the
aircraft makes a close approach to Slave A on the trajectory's
second leg. Hence the RSS error becomes very small. These

errors begin to increase towards the end of the trajectory leg,
due to the increasingly uncertain north component. In contrast,
LORAN Slaves B, C, and D are farther from the aircraft's

trajectory. The first trajectory leg results in good relative north
information to B, C, and D, whereas the east component
uncertainty grows due to the lack of relative east information.

The variations in performance observed from Stations A-D are

due to trajectory effects; using Station B instead of A to update
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Figure 1. Aircraft Trajectories Used in Simulations

to

the INS is equivalent to using A and changing the aircraft's
trajectory.

Effect of Increasing the Number of Navaids in a
Hybrid System

Next, the effect of the number of ground stations was

studied by simulating all possible combinations of single,
double, and triple stations formed from stations A-D. There are
six possible combinations of two stations and four combinations

of three stations that may be integrated to aid the INS. These
simulations were carried out for LORAN, TACAN, DME and
VOR.

Referring to the LORAN results in Fig. 4, the performance

variation among the double station combinations and triple
station combinations is less pronounced than the single station
variations. The magnitude of the RSS errors decreases
dramatically when two stations are used instead of one station.
The RSS errors decrease further when three stations are used,

although the magnitude differences are not as great. The reason
why the RSS magnitudes of the double- and triple-station
combinations are much lower is that the aircraft receives the best

navigation information available. This also explains why there
is much more variation in the results for the double station

combinations than for the triple stations. Similar performance

trends were observed for GPS, TACAN, DME, and VOR [14].

Effect of Trajectory on Hybrid Performance

It already has been shown that an aircraft's trajectory
relative to a single ground station hybrid plays an important role
in the estimator's performance. The RSS results in Fig. 5
illustrate the performance differences of the LORAN Slave A

hybrid on the high-performance, commercial transport, and
general aviation trajectories. Two parameters that contribute to
these performance differences are distance to a station and

heading with respect to a station. A third trajectory parameter
that contributes to a hybrid system's performance is the number
of heading changes along the trajectory. The effect of heading

changes is discussed in more detail in [14]. Trajectory factors
affect the INS dynamics, which in turn affects the error

estimation performance. The trajectory factors also change the
measurement dynamics since the measurements are dependent
on the trajectory's geometric properties and aircraft states (such

as velocity). The results in Fig. 5 clearly show that when the
trajectory changes, the navaid selection decision most likely
changes as well since the relative accuracies of the navaids

change.
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Figure 2. Performance of Satellite, Ground
Station-Based and On-Board Hybrid
Navigation Systems

Hybrid Performance of Mixed Navaids

Figure 6 shows various combinations of integrated navaids.

The individual performances of LORAN Slave B, Doppler
radar, and Air Data hybrids are shown in Fig. 6 along the high-
performance trajectory. The LORAN/Doppler and LORAN/Air

data hybrids also are plotted in this figure for comparison. Both
combinations gave better results than their individual

components operating alone. For example, the
LORAN/Doppler combination outperformed the LORAN hybrid
and the Doppler hybrid; similarly, the LORAN/Air Data
combination gave better results than did the LORAN alone or the

Air Data sensors alone. The latter combination did slightly
better than Doppler hybrid on this trajectory after the initial

transient period. These results show that good navigation
performance is still obtainable when a "failed" LORAN system
(only one slave station operational) is integrated with an on-

board navaid such as Doppler radar or a standard equipment air
data sensor.
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DEVELOPMENT OF A NAVIGATION SENSOR
MANAGEMENT EXPERT SYSTEM

This section describes a novel methodology that uses

established statistical techniques to develop the NSM expert
from the simulation data. The primary function of this expert
system is to select the external navaid sensors that provide the

smallest possible RSS position error from a large set of available
sensors. The Analysis of Variance (ANOVA) technique [11] is
used to identify the factors that make statistically significant
contributions to the decision metric. Then, the ID3 algorithm

determines the relationships between these factors [ 11,13].

Identifying Important Factors Using ANOVA

The ANOVA technique was applied as follows: first, the
mean value of the RSS position error and the variance for all the
simulations were computed. The ANOVA model decomposes
the variance into a sum of variances, each associated with a

potentially contributing factor. Over two hundred simulations

were performed, and the data were used in a four-factor navaid
experiment. The goal of the experiment was to identify which
of the factors (navaid type, number of ground stations,
trajectory effects, performance history) and their interactions had
statistically significant impacts on the RSS position error. The

factor states used in the ANOVA experiment were:
Navaids={VOR, DME, LORAN, TACAN, GPS}; Number of

Ground Stations={One, Two, Three}; Trajectory Type={High-
Performance, Commercial Transport, General Aviation, from
Fig. 1 }; Time Interval = {I, II, III, IV}. Since each trajectory
consists of four, fifteen-minute legs, the "Time Interval" factor
refers to the RSS performance obtained within each fifteen

minute time frame. Four single-station, six double-station, and
four triple-station hybrids were simulated using combinations of
Stations A-D in Fig. 1.

The ANOVA results [ i_1] show that three of the four factors

are strongly significant with 99% confidence; the fourth factor,
trajectory, was shown to be weakly significant (90%

confidence). The latter result suggested that additional
investigation into the effect of trajectory on RSS position error is

necessary for more specific trends to be observed. Indeed the

term "trajectory" is extremely vague; the results from Scheffe

comparison tests suggest that "trajectory" should be
decomposed into attributes that describe, in better detail, what
these effects really are. For example, some trajectory attributes
include distance from a station, airspeed, and whether the

aircraft is approaching or receding from the station. Scheffe

multiple comparison tests were applied to the navaid and
number of ground station factors to identify the specific
differences within each groups; for example, the RSS

performance difference between GPS and TACAN, all other
factors being equal, was statistically significant. On the other
hand, the RSS performance difference between LORAN and
TACAN with all other factors being equal, was not statistically

significant. This means that a LORAN hybrid could perform
better or worse than a TACAN hybrid, depending on the values
of the other factors (e.g., number of ground stations). The

multiple comparison test results yielded the same performance
ranking depicted in the graphical results (e.g., Fig. 2), while

utilizing the information content of a large number of
independent simulations. Further investigation into the ANOVA
interaction effects revealed that the ranking should be cautiously

applied to single-station hybrids, since these are highly-sensitive
to trajectory effects. The complete factor analysis results are

given in Ref. 14. In summary, the ANOVA and Scheffe

methods systematically identified trends in the simulation data
without recourse to tedious graphical analysis.

Extracting Rules Using Induction: The ID3 Algorithm

The ID3 Algorithm uses inductive inference to extract rules

[13] from a training set of examples. The problem space is
described in terms of attributes, where each attribute is

characterized by a set of values that define the possible "states."

For example, in the previous section, the navaid type and
number of ground stations were shown to be attributes affecting

RSS position error. The attribute values for the factor "navaid
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type" were {GPS, LORAN, TACAN, DME, VOR}, and the

attribute values for the factor "number of stations" were {One,
Two, Three}. Hence there is a clear connection between

ANOVA and ID3 problem structures. ANOVA factors are ID3
attributes, and ANOVA factor levels are ID3 attribute values.

An important problem in designing an inductive inference
algorithm is identifying the attributes that span the problem
space most efficiently, so that the resulting decision tree is as

compact as possible. The ID3 algorithm selects the most
important attributes using an information-theoretic measure
(ITM) that minimizes the number of tests (attribute nodes)

necessary to classify a problem. The ID3 algorithm utilizes a
splitting strategy [12] to decide which attribute provides the

most information from the example set. A detailed example
illustrating how the splitting strategy is used to construct

classification rules is given in [14].

Developing the ID3 Attribute Framework Using
ANOVA Results

Up to three ground stations (four GPS satellites) were

included as possible configurations. Time-weighted
measurement effects are included in the attribute framework

using RSS position error classification codes representing the

hybrid's performance on a preceding trajectory leg. The
trajectory effects were separated into the following attributes:
geodetic distance from a ground station, line-of-sight angle from

the station, and the direction of flight (approaching or receding)
relative to a ground station. The distance from a ground station
is an important attribute since the signal-to-noise ratio decreases
as the distance to the station increases. The direction of flight

with respect to the station influences position accuracy through
its effect on the line-of-sight angle. The trajectory parameters

were computed for each of the high-performance, jet transport,

and .general aviation trajectories on each trajectory leg. The
maxm_um and minimum distances to the aiding station were also

determined on each trajectory leg, in addition to the difference
between the maximum and minimum distances.

When more than one station was used, the attributes were

redefined slightly. The maximum and minimum distances then

referred to the closest and farthest distances computed to the

stations. The distance difference is the algebraic difference
between the farthest and closest distances determined on the

trajectory leg. A similar definition was applied to the line-of-
sight angle; from the angles computed to each station, the

largest and smallest were selected. The ID3 algorithm's task
was then to determine how these attributes were related to each

other and to the RSS performance.

The classification scheme chosen to represent the RSS
position error endnode in the decision trees is depicted in Table
I. Since an approximate prediction of the RSS position error

was of interest, it was appropriate to represent the RSS
performance in terms of an error range.

Table I RSS Position Error Classification
Scheme

Accuracy
[High] [Medium] [Low]

Error Code Error Code Error Code
(N. Mi.) (N. Mi.) (N. Mi.)

0.00-0.02 c-1

0.02-0.04 c-2
0.04-0.06 c-3
0.06-0.08 c-4

0.08-0.10 c-5

0.10-0.20 c-6 1.0-1.5 c-15
0.20-0.30 c-7 1.5-2.0 c-16

0.30-0.40 c-8 2.0-2.5 c-17
0.40-0.50 c-9 2.5-3.0 c-18
0.50-0.60 c-10 3.0-3.5 c-19

0.60-0.70 c-ll 3.5-4.0 c-20
0.70-0.80 c-12 4.0-4.5 c-21
0.80-0.90 c-13 4.5-5.0 c-22
0.90-1.00 c-14 > 5.00 c-23

The velocity, distance, and line-of-sight angles were
expressed in terms of ranges instead of individual values, so that

the expert system weights trends more heavily than specific

examples. This renders the expert system more adaptable to
new conditions, because matches between the actual and

knowledge-base cases could be obtained more frequently.
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The example set was developed using the attribute
framework described above. The RSS position errors for each

simulation were classified on each trajectory leg using the
scheme in Table I. The ID3 example base was then created
from each single-, double-, and triple-station simulation.

NSM Decision Trees

The NSM example set was divided into seventeen smaller
example sets. The GPS and on-board navaid examples were

grouped into one expert, whereas the ground-based navaid
examples were divided according to navaid type and time (15-
minute intervals). The ID3 algorithm constructed decision trees
for each of the seventeen small expert systems that comprise the

larger NSM Expert. The breakdown of the NSM Expert into

smaller systems provides greater manageability of the training
example base. The total number of examples used to develop
the NSM Expert System was nine hundred and thirty-two. In
total, two hundred and sixty Kalman Filter covariance
simulations were performed to formulate the complete NSM

example set. An additional thirty-seven simulations were
performed to obtain a decision tree to estimate RSS performance
when different navaid types are combined. The NSM expert
system prompts the user for a set of flight conditions
commensurate with the attribute/value lists used in the example

set, and the resulting RSS classification code is returned to the
user from the decision tree.

A typical decision tree obtained for the ground-based

navaids is exemplified by the TACAN results. Figure 7
presents the decision trees for single-, double-, and triple-station
combinations on the first fifteen-minute trajectory leg. Here, the

majority of the testing nodes are trajectory parameters (distance,
LOS angle, direction of flight with respect to the station(s)).
The top or root node in Fig. 7 is the aircraft's direction of flight.
This is expected because the distance and LOS angle attributes
are dependent on directional motion. Distance, LOS angle, and

groundspeed are results of the aircraft's motion, and hence,
represent more specific problem parameters; therefore it is
expected that these parameters appear at a lower depth in the

decision tree. Figure 7 also shows that distance, ground

velocity, LOS angle, and hybrid performance history are
significant factors that enable a prediction of the RSS error to be
made. The RSS classification results verify that the closer the
aircraft is to a station(s), the smaller is the RSS error; other

results show that the larger is the LOS angle, the smaller is the
RSS error [14].

The expected performance of the GPS system on each

trajectory leg is shown in Fig. 8. Note that the aircraft's
groundspeed plays an important role in the GPS hybrid's
performance. Velocity affects the measurement dynamics
(history) and is therefore classified as a trajectory effect. From

Fig. 8, the two-satellite hybrids are more sensitive to these
velocity effects than are the three- and four-satellite hybrids.

Finally, the decision tree showing what position error range
is expected when different navaid types are integrated in a

hybrid system is presented in Fig. 9. Note that the decision tree
is not specified for a given trajectory leg. The RSS position
errors for these simulations were averaged over the entire flight
time for the high-performance trajectory. "Ihe free is crganimd

_mmofthenavilNtimn-ett_ttsed: (1) Dis_,:e-Velooty (p-V), (2) Bea-hg-
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_t _ is a better distance-measuring navaid than DME and

that Doppler Radar is a better velocity-measuring system than

the Air Data Sensor when p-V navigation is used. The p-0

results show that it is possible to obtain performance when
LORAN and VOR are used. The LORAN/DME hybrid gives
better results than two DME stations but worse performance

than two LORAN stations. By far the worst results are

obtained using two VOR stations. As discussed before, the
VOR system is the least accvrate measurement device of the
seven systems studied, which greatly affects INS-VOR hybrid
results.
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Aided by TACAN During the First 15 Minutes of Flight
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PERFORMANCE RESULTS OF NSM EXPERT
SYSTEM

It is important to quantify the NSM Expert's performance
for several test scenarios, in terms of how well it predicts a

given hybrid's RSS position error. It is also important to gain
insight into the factors that affect the system's performance, so

that these factors can be exploited in future system development.

Two high-performance trajectories were used in the
performance evaluation of the NSM Expert. The two
trajectories each consist of four fifteen-minute legs. Trajectory

#2's flight pattern was in a counter-clockwise direction, whereas
clockwise flight patterns were used to develop the NSM Expert

(Fig. 1). Additionally, the takeoff point on Trajectory #2 was
five degrees farther north than the training trajectories' takeoff

points. These trajectory differences change the measurement
and INS dynamics, and hence the hybrid performance.

Trajectory #2 was designed this way intentionally, so that the
NSM Expert System's adaptability could be determined.

Single-, double-, and triple-station combination hybrids
were simulated on each test trajectory for each of the DME,

VOR, TACAN, and LORAN systems. The combinations were
formed using four ground stations located as in Fig. 1 with

respect to each other. Additionally, two-, three-, and four-
satellite hybrids were simulated on the test trajectories, as were

Doppler Radar and Air Data sensor hybrids. In total, sixty
covariance simulations were performed for the two test

trajectories.

Test Trajectory Data Preparation, Performance
Metrics, and Results

The performance results for each of the sixty simulations
were classified on each trajectory leg according to the scheme in

Table I. The total number of matches was counted on each leg
of each test trajectory for the seven navaid types studied. A
match was declared between the actual and predicted RSS

classification if and only if the RSS classification codes differed
by one or less. For example, if the NSM Expert predicted an
RSS classification code of 6 whereas the covariance results

determined a performance of Class 7, a match was declared. A
match would also have been declared if the actual performance
was Class 5. Since the NSM Expert is only expected to estimate

a hybrid's performance, it is allowed some room for error.

In total, the NSM Expert System was run four hundred and
eighty-eight times in order to determine the number of matches
for each system on the test trajectories. Figure 10 shows the
NSM Expert's performance in predicting the RSS position error

for each hybrid configuration. The predictive performance
metric for each navaid is defined as the percentage of number of
matches obtained from the total number of combinations tested
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for that navaid. The matches on all four trajectory legs are
reflected in this figure.

The NSM Expert performed very well on the two test

trajectories. Figure 10 shows that the NSM Expert correctly
predicts the RSS position error better than 70% of the time on

test Trajectory #1. The system required only the trajectory
information and its knowledge of hybrid system performance to

make these predictions. However, its predictive capability on
test Trajectory #2 is slightly worse for the LORAN hybrids,
considerably worse for the VOR and Air Data sensor hybrids,
and identical for the remaining configurations. Hence, the

results from Trajectory #2 suggest that additional investigation
into trajectory effects on VOR's and Air Data Sensor's
performance may be necessary.

100
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_. Test Trajectory #2

g

i °°
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7 20
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DOPPLER AIR DATA
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The results in Fig. 10 are truly encouraging for designers of
expert systems. We have shown that an expert system can be
designed from data, and that good results are obtainable even
from relatively small training sets. Recall that the total number

of examples used to obtain the NSM decision trees was slightly
less than one thousand.

CONCLUSIONS

The performances of seven navigation systems aiding a
medium-accuracy INS were investigated using Kalman Filter
covariance analyses. Hybrid performance decisions were based

on the RSS position error history metric. A NSM Expert was
designed from covariance simulation data using a systematic

method comprised of the two statistical techniques, the Analysis
of Variance (ANOVA) method and the ID3 algorithm.

ANOVA results show that statistically different position
accuracies are obtained when different navaids are used, the
number of radio navigation ground stations or GPS satellites

used to aid the INS is varied, the aircraft's trajectory is varied,

and the performance history is varied. By indicating that these
four factors significantly affect the decision metric, an
appropriate parameter framework was designed, and a
simulation example base was created.

The example base was composed of over nine hundred
training examples from nearly three hundred simulations. The

example base was divided into seventeen smaller groups to
enhance manageability. The ID3 algorithm then was used to
determine the NSM Expert's classification "rules" in the form of
decision trees. The performances of these decision trees were

assessed on two arbitrary trajectories, by counting the number
of times the rules correctly predicted the RSS position accuracy.

These performance results then were presented using a
predictive metric.

The ANOVA/ID3 method was very effective for the
systematic development of the NSM Expert using simulation

data. Results show that the NSM Expert can predict the RSS
position accuracy between 65 and 100% of the time for a
specified navaid configuration and aircraft trajectory. The test
trajectories used to evaluate the system's performance show that

the NSM Expert adapts to new situations and provides
reasonable estimates of the expected hybrid performance. The

system's good performance with relatively few examples clearly
shows how the ID3 algorithm maximizes the information
content contained in the example base. The performance results
strongly suggest that operational systems can be designed from
simulation or experimental data using the ANOVABD3 method

for knowledge acquisition. The systematic nature of the method
makes it a useful tool for expert system designers.

Other aerospace applications that are good candidates for
the ANOVA/ID3 method are air combat pilot strategies from

simulation or flight test data and air traffic control solutions to
multi-configuration problems. The expert system design

methodology also is pertinent to problems such as nuclear
reactor control strategies, chemical process control strategies,
automated highway driving, and robotics applications. In each
case simulation or operational experiments may be executed for

the systematic development of an expert system advisor.
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